下面小編就為大家?guī)硪黄猨avascript小數精度丟失的完美解決方法。小編覺得挺不錯的,現在就分享給大家,也給大家做個參考。
原因:js按照2進制來處理小數的加減乘除,在arg1的基礎上 將arg2的精度進行擴展或逆擴展匹配,所以會出現如下情況.
javascript(js)的小數點加減乘除問題,是一個js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相應精度的四種js算法
代碼如下:
function accDiv(arg1,arg2){
var t1=0,t2=0,r1,r2;
try{t1=arg1.toString().split(".")[1].length}catch(e){}
try{t2=arg2.toString().split(".")[1].length}catch(e){}
with(Math){
r1=Number(arg1.toString().replace(".",""))
r2=Number(arg2.toString().replace(".",""))
return accMul((r1/r2),pow(10,t2-t1));
}
} /* 何問起 hovertree.com */
//乘法
function accMul(arg1,arg2)
{
var m=0,s1=arg1.toString(),s2=arg2.toString();
try{m+=s1.split(".")[1].length}catch(e){}
try{m+=s2.split(".")[1].length}catch(e){}
return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,m)
}
//加法
function accAdd(arg1,arg2){
var r1,r2,m;
try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
m=Math.pow(10,Math.max(r1,r2))
return (arg1*m+arg2*m)/m
}
//減法
function Subtr(arg1,arg2){
var r1,r2,m,n;
try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
m=Math.pow(10,Math.max(r1,r2));
n=(r1>=r2)?r1:r2;
return ((arg1*m-arg2*m)/m).toFixed(n);
}
以上這篇javascript小數精度丟失的完美解決方法就是小編分享給大家的全部內容了,希望能給大家一個參考