形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯(lián)系、發(fā)展變化、對立統(tǒng)一律、質(zhì)量互變律、否定之否定律。
小學(xué)數(shù)學(xué)要培養(yǎng)學(xué)生初步的抽象思維能力,重點突出在:
(1)思維品質(zhì)上,應(yīng)該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。
(2)思維方法上,應(yīng)該學(xué)會有條有理,有根有據(jù)地思考。
(3)思維要求上,思路清晰,因果分明,言必有據(jù),推理嚴(yán)密。
(4)思維訓(xùn)練上,應(yīng)該要求:正確地運用概念,恰當(dāng)?shù)叵屡袛?,合乎邏輯地推理?/p>
特例法
對于涉及一般性結(jié)論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
例15:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那么大圓半徑就是2.計算一下,就能得出正確結(jié)果。
例16:正方形的面積和邊長成正比例嗎?
如果正方形的邊長為a,面積為s.那么,s:a=a(比值不定)
所以,正方形的面積和邊長不成正比例。