連續(xù)
1、知識(shí)范圍
(1)函數(shù)連續(xù)的概念
函數(shù)在一點(diǎn)處連續(xù)的定義、左連續(xù)與右連續(xù)函數(shù)在一點(diǎn)處連續(xù)的充分必要條件、函數(shù)的間斷點(diǎn)及其分類(lèi)
(2)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì)
連續(xù)函數(shù)的四則運(yùn)算、復(fù)合函數(shù)的連續(xù)性、反函數(shù)的連續(xù)性
(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
有界性定理、最大值與最小值定理、介值定理(包括零點(diǎn)定理)
(4)初等函數(shù)的連續(xù)性
2、要求
(1)理解函數(shù)在一點(diǎn)處連續(xù)與間斷的概念,理解函數(shù)在一點(diǎn)處連續(xù)與極限存在的關(guān)系,掌握判斷函數(shù)(含分段函數(shù))在一點(diǎn)處的連續(xù)性的方法。
(2)會(huì)求函數(shù)的間斷點(diǎn)及確定其類(lèi)型。
(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會(huì)用介值定理推證一些簡(jiǎn)單命題。
(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會(huì)利用連續(xù)性求極限。
一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1、知識(shí)范圍
(1)導(dǎo)數(shù)概念
導(dǎo)數(shù)的定義、左導(dǎo)數(shù)與右導(dǎo)數(shù)、函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件導(dǎo)數(shù)的幾何意義與物理意義、可導(dǎo)與連續(xù)的關(guān)系
(2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式
導(dǎo)數(shù)的四則運(yùn)算、反函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的基本公式
(3)求導(dǎo)方法
復(fù)合函數(shù)的求導(dǎo)法、隱函數(shù)的求導(dǎo)法、對(duì)數(shù)求導(dǎo)法由參數(shù)方程確定的函數(shù)的求導(dǎo)法、求分段函數(shù)的導(dǎo)數(shù)
(4)高階導(dǎo)數(shù)
高階導(dǎo)數(shù)的定義、高階導(dǎo)數(shù)的計(jì)算
(5)微分
微分的定義、微分與導(dǎo)數(shù)的關(guān)系、微分法則一階微分形式不變性
2、要求
(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法。
(2)會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)方法,會(huì)求反函數(shù)的導(dǎo)數(shù)。
(4)掌握隱函數(shù)求導(dǎo)法、對(duì)數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會(huì)求分段函數(shù)的導(dǎo)數(shù)。
(5)理解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的階導(dǎo)數(shù)。
(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的一階微分。
(二)微分中值定理及導(dǎo)數(shù)的應(yīng)用
1、知識(shí)范圍
(1)微分中值定理
羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理
(2)洛必達(dá)(L‘Hospital)法則
(3)函數(shù)增減性的判定法
(4)函數(shù)的極值與極值點(diǎn)最大值與最小值
(5)曲線的凹凸性、拐點(diǎn)
(6)曲線的水平漸近線與鉛直漸近線