本文我們來分享一個(gè)python的輕型的任務(wù)隊(duì)列程序,他可以讓python的分布式任務(wù)huey實(shí)現(xiàn)異步化任務(wù),感興趣的朋友可以看看。
一個(gè)輕型的任務(wù)隊(duì)列,功能和相關(guān)的broker沒有celery強(qiáng)大,重在輕型,而且代碼讀起來也比較的簡(jiǎn)單。
關(guān)于huey的介紹: (比celery輕型,比mrq、rq要好用 ?。?/P>
a lightweight alternative.
written in python
no deps outside stdlib, except redis (or roll your own backend)
support for django
supports:
multi-threaded task execution
scheduled execution at a given time
periodic execution, like a crontab
retrying tasks that fail
task result storage
安裝:
代碼如下:
Installing
huey can be installed very easily using pip.
pip install huey
huey has no dependencies outside the standard library, but currently the only fully-implemented queue backend it ships with requires redis. To use the redis backend, you will need to install the python client.
pip install redis
Using git
If you want to run the very latest, feel free to pull down the repo from github and install by hand.
git clone
cd huey
python setup.py install
You can run the tests using the test-runner:
python setup.py test
關(guān)于huey的api,下面有詳細(xì)的介紹及參數(shù)介紹的。
代碼如下:
from huey import RedisHuey, crontab
huey = RedisHuey('my-app', host='redis.myapp.com')
@huey.task()
def add_numbers(a, b):
return a + b
@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
sync_all_data()
juey作為woker的時(shí)候,一些cli參數(shù)。
常用的是:
-l 關(guān)于日志文件的執(zhí)行 。
-w workers的數(shù)目,-w的數(shù)值大了,肯定是增加任務(wù)的處理能力
-p --periodic 啟動(dòng)huey worker的時(shí)候,他會(huì)從tasks.py里面找到 需要crontab的任務(wù),會(huì)派出幾個(gè)線程專門處理這些事情。
-n 不啟動(dòng)關(guān)于crontab里面的預(yù)周期執(zhí)行,只有你觸發(fā)的時(shí)候,才會(huì)執(zhí)行周期星期的任務(wù)。
--threads 意思你懂的。
1
代碼如下:
# 原文:
The following table lists the options available for the consumer as well as their default values.
-l, --logfile
Path to file used for logging. When a file is specified, by default Huey will use a rotating file handler (1MB / chunk) with a maximum of 3 backups. You can attach your own handler (huey.logger) as well. The default loglevel is INFO.
-v, --verbose
Verbose logging (equates to DEBUG level). If no logfile is specified and verbose is set, then the consumer will log to the console. This is very useful for testing/debugging.
-q, --quiet
Only log errors. The default loglevel for the consumer is INFO.
-w, --workers
Number of worker threads, the default is 1 thread but for applications that have many I/O bound tasks, increasing this number may lead to greater throughput.
-p, --periodic
Indicate that this consumer process should start a thread dedicated to enqueueing “periodic” tasks (crontab-like functionality). This defaults to True, so should not need to be specified in practice.
-n, --no-periodic
Indicate that this consumer process should not enqueue periodic tasks.
-d, --delay
When using a “polling”-type queue backend, the amount of time to wait between polling the backend. Default is 0.1 seconds.
-m, --max-delay
The maximum amount of time to wait between polling, if using weighted backoff. Default is 10 seconds.
-b, --backoff
The amount to back-off when polling for results. Must be greater than one. Default is 1.15.
-u, --utc
Indicates that the consumer should use UTC time for all tasks, crontabs and scheduling. Default is True, so in practice you should not need to specify this option.
--localtime
Indicates that the consumer should use localtime for all tasks, crontabs and scheduling. Default is False.
Examples
Running the consumer with 8 threads, a logfile for errors only, and a very short polling interval:
huey_consumer.py my.app.huey -l /var/log/app.huey.log -w 8 -b 1.1 -m 1.0
任務(wù)隊(duì)列huey 是靠著redis來實(shí)現(xiàn)queue的任務(wù)存儲(chǔ),所以需要咱們提前先把redis-server和redis-py都裝好。 安裝的方法就不說了,自己搜搜吧。
我們首先創(chuàng)建下huey的鏈接實(shí)例 :
代碼如下:
# config.py
from huey import Huey
from huey.backends.redis_backend import RedisBlockingQueue
queue = RedisBlockingQueue('test-queue', host='localhost', port=6379)
huey = Huey(queue)
然后就是關(guān)于任務(wù)的,也就是你想讓誰(shuí)到任務(wù)隊(duì)列這個(gè)圈子里面,和celey、rq,mrq一樣,都是用tasks.py表示的。
代碼如下:
from config import huey # import the huey we instantiated in config.py
@huey.task()
def count_beans(num):
print '-- counted %s beans --' % num
再來一個(gè)真正去執(zhí)行的 。 main.py 相當(dāng)于生產(chǎn)者,tasks.py相當(dāng)于消費(fèi)者的關(guān)系。 main.py負(fù)責(zé)喂數(shù)據(jù)。
代碼如下:
main.py
from config import huey # import our "huey" object
from tasks import count_beans # import our task
if __name__ == '__main__':
beans = raw_input('How many beans? ')
count_beans(int(beans))
print 'Enqueued job to count %s beans' % beans
Ensure you have Redis running locally
Ensure you have installed huey
Start the consumer: huey_consumer.py main.huey (notice this is “main.huey” and not “config.huey”).
Run the main program: python main.py
和celery、rq一樣,他的結(jié)果獲取是需要在你的config.py或者主代碼里面指明他的存儲(chǔ)的方式,現(xiàn)在huey還僅僅是支持redis,但相對(duì)他的特點(diǎn)和體積,這已經(jīng)很足夠了 !
只是那幾句話而已,導(dǎo)入RedisDataStore庫(kù),申明下存儲(chǔ)的地址。
代碼如下:
from huey import Huey
from huey.backends.redis_backend import RedisBlockingQueue
from huey.backends.redis_backend import RedisDataStore # ADD THIS LINE
queue = RedisBlockingQueue('test-queue', host='localhost', port=6379)
result_store = RedisDataStore('results', host='localhost', port=6379) # ADDED
huey = Huey(queue, result_store=result_store) # ADDED result store
這個(gè)時(shí)候,我們?cè)趇python再次去嘗試的時(shí)候,會(huì)發(fā)現(xiàn)可以獲取到tasks.py里面的return值了 其實(shí)你在main.py里面獲取的時(shí)候,他還是通過uuid從redis里面取出來的。
代碼如下:
>>> from main import count_beans
>>> res = count_beans(100)
>>> res # what is "res" ?
<huey.api.AsyncData object at 0xb7471a4c>
>>> res.get() # get the result of this task
'Counted 100 beans'
huey也是支持celey的延遲執(zhí)行和crontab的功能 。 這些功能很是重要,可以自定義的優(yōu)先級(jí)或者不用再借助linux本身的crontab。
用法很簡(jiǎn)單,多加一個(gè)delay的時(shí)間就行了,看了下huey的源碼,他默認(rèn)是立馬執(zhí)行的。當(dāng)然還是要看你的線程是否都是待執(zhí)行的狀態(tài)了。
代碼如下:
>>> import datetime
>>> res = count_beans.schedule(args=(100,), delay=60)
>>> res
<huey.api.AsyncData object at 0xb72915ec>
>>> res.get() # this returns None, no data is ready
>>> res.get() # still no data...
>>> res.get(blocking=True) # ok, let's just block until its ready
'Counted 100 beans'
更多信息請(qǐng)查看IT技術(shù)專欄
2025國(guó)考·省考課程試聽報(bào)名