消去思路
對(duì)于要求兩個(gè)或兩個(gè)以上未知數(shù)的數(shù)學(xué)題,我們可以想辦法將其中一個(gè)未知數(shù)進(jìn)行轉(zhuǎn)化,進(jìn)而消去一個(gè)未知數(shù),使數(shù)量關(guān)系化繁為簡(jiǎn),這種思路叫消去思路,運(yùn)用消去思路解題的方法叫消去法。二元一次方程組的解法,就是沿著這條思路考慮的。
例1 師徒兩人合做一批零件,徒弟做了6小時(shí),師傅做了8小時(shí),一共做了312個(gè)零件,徒弟5小時(shí)的工作量等于師傅2小時(shí)的工作量,師徒每小時(shí)各做多少個(gè)零件?
分析(用消去思路考慮):
這里有師、徒每小時(shí)各做多少個(gè)零件兩個(gè)未知量。如果以徒弟每小時(shí)工作量為1份,把師傅的工作量用徒弟的工作量來(lái)代替,那么師傅8小時(shí)的工作量相當(dāng)于這樣的幾份呢?很明顯,師傅2小時(shí)的工作量相當(dāng)于徒弟5小時(shí)的工作量,那么8小時(shí)里有幾個(gè)2小時(shí)就是幾個(gè)5小時(shí)工作量,這樣就把師傅的工作量換成了徒弟的工作量,題目里就消去了師傅工作量這個(gè)未知數(shù);然后再看312個(gè)零件里包含了多少個(gè)徒弟單位時(shí)間里的工作量,就是徒弟應(yīng)做多少個(gè)。求出了徒弟的工作量,根據(jù)題中師博工作量與徒弟工作量的倍數(shù)關(guān)系,也就能求出師傅的工作量了。
例2 小明買2本練習(xí)本、2枝鉛筆、2塊橡皮,共用0.36元,小軍買4本練習(xí)本、3枝鉛筆、2塊橡皮,共用去0.60元,小慶買5本練習(xí)本、4枝鉛筆、2塊橡皮,共用去0.75元,問練習(xí)本、鉛筆、橡皮的單價(jià)各是多少錢?
分析(用消去法思考):
這里有三個(gè)未知數(shù),即練習(xí)本、鉛筆、橡皮的單價(jià)各是多少錢?我們要同時(shí)求出三個(gè)未知數(shù)是有困難的。應(yīng)該考慮從三個(gè)未知數(shù)中先去掉兩個(gè)未知數(shù),只留下一個(gè)未知數(shù)就好了。
如何消去一個(gè)未知數(shù)或兩個(gè)未知數(shù)?一般能直接消去的就直接消去,不能直接消去,就通過(guò)擴(kuò)大或縮小若干倍,使它們之間有兩個(gè)相同的數(shù)量,再用加減法即可消去,本題把小明小軍、小慶所購(gòu)買的物品排列如下:
小明 2本 2枝 2塊 0.36元
小軍 4本 3枝 2塊 0.60元
小慶 5本 4枝 2塊 0.75元
現(xiàn)在把小明的各數(shù)分別除以2,可得到1本練習(xí)本、1枝鉛筆、1塊橡皮共0.18元。
接著用小慶的各數(shù)減去小軍的各數(shù),得1本練習(xí)本、1枝鉛筆為0.15元。
再把小明各數(shù)除以2所得的各數(shù)減去上數(shù),就消去了練習(xí)本、鉛筆兩個(gè)未知數(shù),得到1塊橡皮0.03元,采用類似的方法可求出練習(xí)本和鉛筆的單價(jià)。