再有,學(xué)生習(xí)慣于算術(shù)解法解應(yīng)用題,這會(huì)對(duì)學(xué)生學(xué)習(xí)代數(shù)方法列方程解應(yīng)用題產(chǎn)生干擾。例如,在求兩車相遇時(shí)間時(shí)(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時(shí)行駛48km,一列快車從乙站開出,每小時(shí)行駛72km,兩列火車同時(shí)開出,相向而行,經(jīng)過多少小時(shí)相遇?),列出的“方程”為x=360/48+72.由此可以看出學(xué)生拘泥于算術(shù)解法的痕跡。而初中需要列出 48x+72x=360 這樣的方程,這表明學(xué)生對(duì)已知數(shù)和未知數(shù)之間的相等關(guān)系的把握程度。
總之,初中開始階段,學(xué)生解題錯(cuò)誤的原因常可追溯到小學(xué)數(shù)學(xué)知識(shí)對(duì)其新學(xué)知識(shí)的影響。講清新學(xué)知識(shí)的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負(fù)數(shù))、方法(代數(shù)和、代數(shù)方法) 與舊有知識(shí)(具體數(shù)字、非負(fù)數(shù)、加減運(yùn)算、算術(shù)方法)的不同,有助于克服干擾,減少初始 階段的錯(cuò)誤。
(二)初中數(shù)學(xué)前后知識(shí)的干擾
隨著初中知識(shí)的展開,初中數(shù)學(xué)知識(shí)本身也會(huì)前后相互干擾。
例如,在學(xué)有理數(shù)的減法時(shí),教師反復(fù)強(qiáng)調(diào)減去一個(gè)數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號(hào)“-”是減號(hào)給學(xué)生留下了深刻的印象。緊接著學(xué)習(xí)代數(shù)和,又要強(qiáng)調(diào)把3-7看成正 3與負(fù)7之和,“-”又成了負(fù)號(hào)。學(xué)生不禁產(chǎn)生到底要把“-”看成減號(hào)還是負(fù)號(hào)的困惑。這個(gè)困惑不能很好地消除,學(xué)生就會(huì)產(chǎn)生運(yùn)算錯(cuò)誤。
又如,了解不等式的解集以及運(yùn)用不等式基本性質(zhì)3是不等式教學(xué)的一個(gè)難點(diǎn),學(xué)生常常在這里犯錯(cuò)誤,其原因就有受等式兩邊可以乘以或除以任何一個(gè)數(shù)以及方程的解是一個(gè)數(shù)有關(guān) .事實(shí)也證明,把不等式的有關(guān)內(nèi)容與等式及方程的相應(yīng)內(nèi)容加以比較,使學(xué)生理解兩者的異同,有助于學(xué)生學(xué)好不等式的內(nèi)容。
學(xué)生在解決單一問題與綜合問題時(shí)的表現(xiàn)也可以說明這個(gè)問題。學(xué)生在解答單一問題時(shí),需要提取、運(yùn)用的知識(shí)少,因而受到知識(shí)間的干擾小,產(chǎn)生錯(cuò)誤的可能性小;而遇到綜合問題,在知識(shí)的選取、運(yùn)用上受到的干擾大,容易出錯(cuò)。
總之,這種知識(shí)的前后干擾,常常使學(xué)生在學(xué)習(xí)新知識(shí)時(shí)出現(xiàn)困惑,在解題時(shí)選錯(cuò)或用錯(cuò)知識(shí),導(dǎo)致錯(cuò)誤的發(fā)生。