知識點總結(jié)
一、約分與通分:
1.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分;
分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據(jù)是分式的基本性質(zhì),即分式的分子、分母都除以同一個不等于零的整式,分式的值不變。
約分的方法和步驟包括:
(1)當分子、分母是單項式時,公因式是相同因式的最低次冪與系數(shù)的最大公約數(shù)的積;
(2)當分子、分母是多項式時,應(yīng)先將多項式分解因式,約去公因式。
2.通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。
分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。
(1)當幾個分式的分母是單項式時,各分式的最簡公分母是系數(shù)的最小公倍數(shù)、相同字母的最高次冪的所有不同字母的積;
(2)如果各分母都是多項式,應(yīng)先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;
(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。
注意:
(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。
(3)約分時,分子與分母不是乘積形式,不能約分.
3.求最簡公分母的方法是:
(1)將各個分母分解因式;
(2)找各分母系數(shù)的最小公倍數(shù);
(3)找出各分母中不同的因式,相同因式中取次數(shù)最高的,滿足(2)(3)的因式之積即為各分式的最簡公分母(求最簡公分母在分式的加減運算和解分式方程時起非常重要的作用)。
二、分式的運算:
1.分式的加減法法則:
(1)同分母的分式相加減,分母不變,把分子相加;
(2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進行計算。
2.分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
4.分式的混合運算順序,先算乘方,再算乘除,最后算加減,有括號先算括號里面的。
5.對于分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。
常見考法
分式的運算通常是綜合考查分式的加減、乘除、約分及分解因式等知識,是中考的重點。特別是化簡求值已經(jīng)成近兩年中考的熱點。題型既有選擇、填空題,也有計算題。
誤區(qū)提醒
(1)互為相反數(shù)的因式約分時漏掉負號;
(2)通分時漏乘而出錯;
(3)把通分與去分母混淆,本是通分,卻把分式中的分母丟掉;
(4)計算順序搞亂而出錯。
【典型例題】