要學(xué)好數(shù)學(xué),學(xué)會(huì)解題是關(guān)鍵。在進(jìn)行解題的過程中,不僅需要加強(qiáng)必要的訓(xùn)練,其還要掌握一定的解題規(guī)律與技巧。
一、數(shù)學(xué)思想方法在解題中有不可忽視的作用
解題的學(xué)習(xí)過程通常的程序是:閱讀數(shù)學(xué)知識(shí),理解概念;在對(duì)例題和老師的講解進(jìn)行反思,思考例題的方法、技巧和解題的規(guī)范過程;然后做數(shù)學(xué)練習(xí)題。
基本題要練程序和速度;典型題嘗試一題多解開發(fā)數(shù)學(xué)思維;最后要及時(shí)總結(jié)反思改錯(cuò),交流學(xué)習(xí)好的解法和技巧。著名的數(shù)學(xué)教育家波利亞說“如果沒有反思,就錯(cuò)過了解題的的一次重要而有意義的方面。”
教師在教學(xué)設(shè)計(jì)中要讓解學(xué)生好數(shù)學(xué)問題,就要對(duì)數(shù)學(xué)思想方法有清楚的認(rèn)識(shí),才能更好的挖掘題目的功能,引導(dǎo)學(xué)生發(fā)現(xiàn)總結(jié)題目的解法和技巧,提高解題能力。
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2. 數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對(duì)問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R(shí)點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問題的能力。原因四是實(shí)際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。常見的類型:類型 1 :由數(shù)學(xué)概念引起的的討論,如實(shí)數(shù)、有理數(shù)、絕對(duì)值、點(diǎn)(直線、圓)與圓的位置關(guān)系等概念的分類討論;類型 2 :由數(shù)學(xué)運(yùn)算引起的討論,如不等式兩邊同乘一個(gè)正數(shù)還是負(fù)數(shù)的問題;類型 3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。類型 5 :由某些字母系數(shù)對(duì)方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對(duì)圖象的影響,二次項(xiàng)系數(shù)對(duì)圖象開口方向的影響,一次項(xiàng)系數(shù)對(duì)頂點(diǎn)坐標(biāo)的影響,常數(shù)項(xiàng)對(duì)截距的影響等。
分類討論思想是對(duì)數(shù)學(xué)對(duì)象進(jìn)行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。分類的步驟:①確定討論的對(duì)象及其范圍;②確定分類討論的分類
標(biāo)準(zhǔn);③按所分類別進(jìn)行討論;④歸納小結(jié)、綜合得出結(jié)論。注意動(dòng)態(tài)問題一定要先畫動(dòng)態(tài)圖。
4 .轉(zhuǎn)化與化歸的思想
轉(zhuǎn)化與化歸市中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
但是轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實(shí)際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。
但是轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實(shí)際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。
常見的轉(zhuǎn)化方法有
( 1 )直接轉(zhuǎn)化法:把原問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題 .
( 2 )換元法:運(yùn)用“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題 . ( 3 )數(shù)形結(jié)合法:研究原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑 .
( 4 )等價(jià)轉(zhuǎn)化法:把原問題轉(zhuǎn)化為一個(gè)易于解決的等價(jià)命題,達(dá)到化歸的目的 .
( 5 )特殊化方法:把原問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題 .
( 6 )構(gòu)造法:“構(gòu)造”一個(gè)合適的數(shù)學(xué)模型,把問題變?yōu)橐子诮鉀Q的問題 .
( 7 )坐標(biāo)法:以坐標(biāo)系為工具,用計(jì)算方法解決幾何問題也是轉(zhuǎn)化方法的一個(gè)重要途徑
轉(zhuǎn)化與化歸的指導(dǎo)思想
( 1 )把什么問題進(jìn)行轉(zhuǎn)化,即化歸對(duì)象 .
( 2 )化歸到何處去,即化歸目標(biāo) .
( 3 )如何進(jìn)行化歸,即化歸方法 .
化歸與轉(zhuǎn)化思想是一切數(shù)學(xué)思想方法的核心 .
二、中學(xué)數(shù)學(xué)解題中的的基本方法
1. 觀察與實(shí)驗(yàn)
( 1 )觀察法:有目的有計(jì)劃的通過視覺直觀的發(fā)現(xiàn)數(shù)學(xué)對(duì)象的規(guī)律、性質(zhì)和解決問題的途徑。
( 2 )實(shí)驗(yàn)法:實(shí)驗(yàn)法是有目的的、模擬的創(chuàng)設(shè)一些有利于觀察的數(shù)學(xué)對(duì)象,通過觀察研究將復(fù)雜的問題直觀化、簡單化。它具有直觀性強(qiáng),特征清晰,同時(shí)可以試探解法、檢驗(yàn)結(jié)論的重要優(yōu)勢(shì)。
2. 比較與分類
( 1 )比較法
是確定事物共同點(diǎn)和不同點(diǎn)的思維方法。在數(shù)學(xué)上兩類數(shù)學(xué)對(duì)象必須有一定的關(guān)系才好比較。我們常比較兩類數(shù)學(xué)對(duì)象的相同點(diǎn)、相異點(diǎn)或者是同異綜合比較。
( 2 )分類的方法
分類是在比較的基礎(chǔ)上,依據(jù)數(shù)學(xué)對(duì)象的性質(zhì)的異同,把相同性質(zhì)的對(duì)象歸入一類,不同性質(zhì)的對(duì)象歸為不同類的思維方法。如上圖中一次函數(shù)的 k 在不等于零的情況下的分類是大于零和小于零體現(xiàn)了不重不漏的原則。
3 .特殊與一般
( 1 )特殊化的方法
特殊化的方法是從給定的區(qū)域內(nèi)縮小范圍,甚至縮小到一個(gè)特殊的值、特殊的點(diǎn)、特殊的圖形等情況,再去考慮問題的解答和合理性。 ( 2 )一般化的方法
4. 聯(lián)想與猜想
( 1 )類比聯(lián)想
類比就是根據(jù)兩個(gè)對(duì)象或兩類事物間存在著的相同或不同屬性,聯(lián)想到另一事物也可能具有某種屬性的思維方法。