解函數、方程、不等式相關問題的常用數學思想方法有:
⑴數形結合的思想方法。
⑵待定系數法。
⑶配方法。
⑷聯(lián)系與轉化的思想。
⑸圖像的平移變換。
四、證明角的相等
1、對頂角相等。
2、角(或同角)的補角相等或余角相等。
3、兩直線平行,同位角相等、內錯角相等。
4、凡直角都相等。
5、角平分線分得的兩個角相等。
6、同一個三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、等腰梯形同一底上的兩個角相等。
11、關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對的圓心角相等。
12、圓內接四邊形的任何一個外角都等于它的內對角。
13、同弧或等弧所對的圓周角相等。
14、弦切角等于它所夾的弧對的圓周角。
15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。
16、全等三角形的對應角相等。
17、相似三角形的對應角相等。
18、利用等量代換。
19、利用代數或三角計算出角的度數相等
20、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,并且這一點和圓心的連線平分兩條切線的夾角。